penCSC
penCSC.Rd
Function to fit penalized cause-specific-cox with elastic-net penalty.
Usage
penCSC(
time,
status,
vars.list,
data,
alpha.list,
lambda.list,
standardize = TRUE,
keep = NULL
)
Arguments
- time
A character showing the name of the time variable in the data.
- status
A character showing the name of the status/event variable in the data.
- vars.list
A named list containing the variables to be included in each cause-specific model. Variables can be vectors of variable names or a one sided formula. Names of the list must be the events and exactly the same as values in the status variable. See `Examples` for details.
- data
A data frame containing the information of the variables.
- alpha.list
A named list containing the single alpha values of each cause-specific model. Names of the list must be the events and exactly the same as values in the status variable. See `Examples` for details.
- lambda.list
A named list containing the single lambda values of each cause-specific model. Names of the list must be the events and exactly the same as values in the status variable. See `Examples` for details.
- standardize
Logical indicating whether the variables must be standardized or not. Default is
TRUE
.- keep
A character vector of the names of variables that should not be shrunk. Default is
NULL
.
Value
A named list containing all the information related to the used data and the fitted models for all causes. Use $
to explore all the involved information.
References
Friedman J, Hastie T, Tibshirani R (2010). "Regularization Paths for Generalized Linear Models via Coordinate Descent." Journal of Statistical Software, 33(1), 1-22. doi:10.18637/jss.v033.i01 , https://www.jstatsoft.org/v33/i01/.
Therneau T (2022). A Package for Survival Analysis in R. R package version 3.3-1, https://CRAN.R-project.org/package=survival.
Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, et al. Welcome to the tidyverse. J Open Source Softw. 2019 Nov 21;4(43):1686.
Bache S, Wickham H (2022). magrittr: A Forward-Pipe Operator for R. https://magrittr.tidyverse.org, https://github.com/tidyverse/magrittr.
Examples
library(riskRegression)
#> riskRegression version 2022.03.22
data(Melanoma)
vl <- list('1'=c('age','sex','ulcer','thick'),
'2'=~age+sex+epicel+thick+ici)
al <- list('1'=0,'2'=.5)
ll <- list('1'=.01,'2'=.04)
penCSC(time='time',status='status',vars.list=vl,
data=Melanoma,alpha.list=al,lambda.list=ll)
#> $`Event: 1`
#> 4 x 1 sparse Matrix of class "dgCMatrix"
#> 1
#> age 0.01184358
#> sexMale 0.42366136
#> ulcerpresent 1.11871164
#> thick 0.10816182
#>
#> $`Event: 2`
#> 7 x 1 sparse Matrix of class "dgCMatrix"
#> 1
#> age 0.03494673
#> sexMale .
#> epicelpresent .
#> thick .
#> ici1 .
#> ici2 .
#> ici3 .
#>